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To date, there is no available targeted therapy for pa-
tients who are diagnosed with triple-negative breast
cancers (TNBC). The aim of this study was to identify a
new specific target for specific treatments. Frozen pri-
mary tumors were collected from 83 adjuvant therapy-
naive TNBC patients. These samples were used for
global proteome profiling by iTRAQ-OFFGEL-LC-MS/MS
approach in two series: a training cohort (n � 42) and a
test set (n � 41). Patients who remains free of local or
distant metastasis for a minimum of 5 years after sur-
gery were classified in the no-relapse group; the others
were in the relapse group. OPLS and Kaplan–Meier anal-
yses were performed to select candidate markers,
which were validated by immunohistochemistry. Three
proteins were identified in the training set and validated
in the test set by Kaplan–Meier method and immunohis-
tochemistry (IHC): TrpRS as a good prognostic markers
and DP and TSP1 as bad prognostic markers. We pro-
pose the establishment of an IHC test to calculate the
score of TrpRS, DP, and TSP1 in TNBC tumors to eval-
uate the degree of aggressiveness of the tumors. Finally,
we propose that DP and TSP1 could provide therapeutic
targets for specific treatments. Molecular & Cellular
Proteomics 14: 10.1074/mcp.M115.048967, 2936–2946,
2015.

Triple-negative breast cancers (TNBC)1 are defined by a
lack of expression of estrogen (ER), progesterone (PR), and

HER2/neu receptors and account for about 15% of all breast
cancers. This subtype is associated with poor prognosis (1) in
terms of distant free survival (DFS) and overall survival (OS),
and to date, there is no clinically available targeted therapy for
patients diagnosed with TNBC. Because of the absence of
specific treatment guidelines for this group of patients, TNBC
are managed with standard adjuvant chemotherapy (2),
which, however, seems to be less effective in those cancers.
In order to improve survival, it is important to determine new
specific-targeted treatment.

A proteomic analysis has several inherent advantages over
a genomic approach in that measured mRNA levels do not
necessarily correlate to corresponding protein levels. In addi-
tion, protein detection is probably also more reflective of the
tumor microenvironment. Several proteomic studies have
been conducted on TNBC (3–5), but no proteomic study was
conducted on large cohorts including the clinical outcome of
the patients, except a recent comparative proteome analysis
that identified a 11-protein signature for aggressive TNBC in a
large cohort of 93 microdissected tumors (6). Although micro-
dissection was necessary to elucidate the contribution of
TNBC cells, it did not reflect the tumor with its microenviron-
ment that is increasingly described as fundamental to explain
the tumor outcome. Thus, it is now recognized that carcino-
mas derive from phenomena that occur in tissues, not in
individual cancer cells. From this perspective, the microenvi-
ronment becomes an integral, essential part of the tumor (7,
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8). In this context, taking into account the tumor microenvi-
ronment, we investigated a cohort of 83 TNBC samples with-
out microdissection by a quantitative proteomic approach
using iTRAQ labeling. Based on clinical data, we established
a protein signature of the most aggressive tumors. From these
differentially expressed proteins, some of them appeared to
be potential therapeutic targets.

PATIENTS AND METHODS

Patients—The study involved 83 patients diagnosed and
treated at the Institut of Cancérologie de l’Ouest (ICO) for a
TNBC, between early 1998 and 2007. The primary inclusion
criterion was an adequate fresh tumor obtained from a re-
sected tumor sample (see below). Patients were included if
they fulfilled the following criteria: (a) female primary unilateral
invasive ER/PR and HER2 negative—breast carcinoma with-
out previous or concomitant malignancies; (b) T1T2, N0N1 N2
N3-, M0 staging according to UICC criteria; (c) older than 18
years old; and (d) surgical first-line treatment. All patients
showed no evidence of distant metastasis at the time of
diagnosis. None had received chemotherapy, endocrine ther-
apy, or radiation therapy prior to surgery. Treatment decisions
were based solely on consensus recommendations at the
time of diagnosis. All the patients received the same adjuvant
chemotherapy (FEC100) and radiotherapy treatments.

Patients were followed up for disease evolution. The 83
tumors were divided in two cohorts: a training cohort (n � 42)
corresponding to patients diagnosed at ICO Paul Papin (An-
gers) and a test cohort (n � 41) corresponding to patients
diagnosed at ICO René Gauducheau (Nantes). The clinico-
pathological characteristics of these TNBC cohorts are listed
in Supplemental data S1. Follow-up data were collected for all
patients, including, disease-free survival (DFS; time from di-
agnosis to first recurrence of the disease or contralateral
breast cancer or second primary other cancer) and overall
survival (OS, time from diagnosis to death from any cause).
Recurrences were defined as locoregional (breast, mammary
region, or regional lymph nodes) or metastatic (visceral or
not). Informed consent was obtained from patients to use their
surgical specimens and clinicopathological data for research
purposes, as required by the French Committee for the Pro-
tection of Human Subjects. This study did not need ethical
approval.

Tumor Characteristics—Pathological data were reviewed
by two pathologists. Tumor size (pT) was measured on fresh
resection specimens, as the maximum diameter (mm) of the
tumor. Histological type was determined according to
the WHO classification and histological grade according to
the Elston and Ellis methods.

ER and PR status were accessed by immunochemistry on
representative formalin-fixed tumors blocks at a 4-�m thick-
ness. Tumors were determined as negative when � 10% cells
stained positive. All patients where HER-2 negative, that
means an immunostaining 1�, score according to the Her-

cepTest scoring system or 2� without HER-2 gene amplifi-
cation investigated by in situ fluorescence.

Sample Collection—All specimens were collected immedi-
ately after surgery, snap frozen, and stored in liquid nitrogen
until the time of analysis. The time between the resection of
the breast tumor and its freezing is less than 1 h. We also
selected four normal macroscopic areas for our control pool.
Frozen sections (12 �m thick) of either TNBC or normal areas
were embedded in OCT and cut on a cryostat (Bright lnstru-
ment Co. Ltd., St. Margarets Way, UK). Specific sections were
stained with toluidine blue for visual reference, and each
tissue section from all specimens was evaluated by experi-
enced pathologists for cancer cell proportion determination.
Samples containing less than 75% of tumor cells were
removed.

Protein Extraction from Frozen Tissues—Ten frozen sec-
tions per tumor were lysed in a buffer consisting of 0.1 M

Tris-HCl, pH 8.0; 0.1 M DTT; and 4% SDS at 95 °C for 90 min.
Detergent was removed from the lysates, and the proteins
were digested with trypsin using the FASP protocol (9) using
spin ultrafiltration units of nominal molecular weight cut
of 30,000. Using YM-30 microcon filter units (Cat. No.
MRCF0R030, Millipore) containing protein concentrates, 200
�l of 8 M urea in 0.1 M Tris/HCl, pH 8.5 (UA), was added, and
samples were centrifuged at 14,000 g at 20 °C for 8 min. This
step was repeated three times. Then 6 �l of 200 mM MMTS in
8 M urea was added to the filters, and the samples were
incubated for 20 min. Filters were washed three times with
200 �l of 8 M UA followed by six washes with 100 �l 0.5 M

TEAB. Finally, trypsin (AB sciex, Carlsbad, CA) was added in
100 �l 0.5 M TEAB to each filter. The protein to enzyme ratio
was 100:1. Samples were incubated overnight at 37 °C, and
released peptides were collected by centrifugation. Samples
were then dried completely using a SpeedVac and resus-
pended in 100 �l of 0.5% trifluoroacetic acid (TFA) in 5%
acetonitrile and were desalted via PepClean C-18 spin col-
umns (Pierce Biotechnology, Rockford, IL). Peptide content
was determined using Micro BCA Protein Assay Kit (Pierce-
Thermo Scientific).

Peptide Labeling with iTRAQ Reagents—Each peptide so-
lution was labeled at room temperature for 2 h with one iTRAQ
reagent vial previously reconstituted with 70 �l of ethanol for
4plex iTRAQ reagent and reconstituted with 50 �l of isopro-
panol for 8plex iTRAQ reagent. A mixture containing small
aliquots from each labeled sample was analyzed by MS/MS to
determine a proper mixing ratio to correct for unevenness in
peptide yield. Labeled peptides were then mixed in 1:1:1:1 (or
1:1:1:1:1:1:1:1) ratio. Peptide mixture was then dried com-
pletely using a SpeedVac.

Peptide OFFGEL Fractionation—For pI-based peptide sep-
aration, we used the 3100 OFFGEL Fractionator (Agilent
Technologies, Böblingen, Germany) with a 24-well setup us-
ing our protocol (10). Briefly, prior to electrofocusing, samples
were desalted onto a Sep-Pak C18 cartridge (Waters). For the
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24-well setup, peptide samples were diluted to a final volume
of, respectively, 3.6 ml using OFFGEL peptide sample solu-
tion. To start, the IPG gel strip of 24 cm-long (GE Healthcare,
München, Germany) with a 3–10 linear pH range was rehy-
drated with the Peptide IPG Strip Rehydradation Solution
according to the manufacturer protocol for 15 min. Then, 150
�l of sample was loaded in each well. Electrofocusing of the
peptides was performed at 20 °C and 50 �A until the 50 kVh
level was reached. After focusing, the 24 peptide fractions
were withdrawn, and the wells were washed with 200 �l of a
solution of water/methanol/formic acid (49/50/1). After 15 min,
the washing solutions were pooled with their corresponding
peptide fraction. All fractions were evaporated by centrifuga-
tion under vacuum and maintained at �20 °C. Just prior na-
no-LC, the fractions were resuspended in 20 �l of H2O with
0.1% (v/v) TFA.

Capillary LC Separation—The samples were separated on
an Ultimate 3,000 nano-LC system (Dionex, Sunnyvale, USA)
using a C18 column (PepMap100, 3 �m, 100 A, 75 �m id � 15
cm, Dionex) at 300 nl/min flow rate. Buffer A was 2% ACN in
water with 0.05% TFA, and buffer B was 80% ACN in water
with 0.04% TFA. Peptides were desalted for 3 min using only
buffer A on the precolumn, followed by a separation for 105
min using the following gradient: 0 to 20% B in 10 min, 20%
to 45% B in 85 min, and 45% to 100% B in 10 min. Chro-
matograms were recorded at the wavelength of 214 nm.
Peptide fractions were collected using a Probot microfraction
collector (Dionex). We used CHCA (LaserBioLabs, Sophia-
Antipolis, France) as MALDI matrix. The matrix (concentration
of 2 mg/ml in 70% ACN in water with 0.1% TFA) was contin-
uously added to the column effluent via a micro “T” mixing
piece at 1.2 �l/min flow rate. After 12 min run, a start signal
was sent to the Probot to initiate fractionation. Fractions were
collected for 10 s and spotted on a MALDI sample plate (1,664
spots per plate, Applied Biosystems, Foster City, CA).

MALDI-MS/MS—MS and MS/MS analyses of offline spot-
ted peptide samples were performed using the 5800 MALDI-
TOF/TOF Analyzer (AB sciex) and 4000 Series Explorer soft-
ware, version 4.0. The instrument was operated in a positive
ion mode and externally calibrated using a mass calibration
standard kit (AB sciex). The laser power was set between
2,800 and 3,400 for MS and between 3,600 and 4,200 for
MS/MS acquisition. After screening all LC-MALDI sample po-
sitions in MS-positive reflector mode using 1,500 laser shots,
the fragmentation of automatically selected precursors was
performed at a collision energy of 1 kV using air as collision
gas (pressure of � 2 � 10�6 Torr) with an accumulation of
2,000 shots for each spectrum. MS spectra were acquired
between m/z 1,000 and 4,000. For internal calibration, we
used the parent ion of Glu1-fibrinopeptide at m/z 1,570.677
diluted in the matrix (30 femtomoles per spot). Up to 12 of the
most intense ion signals per spot position having an S/N � 12
were selected as precursors for MS/MS acquisition. Peptide
and protein identification were performed by the Protein-

PilotTM Software V 4.0 (AB Sciex) using the Paragon algorithm
as the search engine (11). Each MS/MS spectrum was
searched for Homo sapiens species against the Uniprot/swis-
sprot database (UniProtKB/Sprot 20,120,208 release 01, with
525,997 sequence entries). The searches were run using the
fixed modification of methylmethanethiosulfate labeled cys-
teine parameter enabled. Other parameters such as tryptic
cleavage specificity, precursor ion mass accuracy, and frag-
ment ion mass accuracy are MALDI 5800 built-in functions of
ProteinPilot software. The detected protein threshold (unused
protscore (confidence) in the software was set to 1.3 to
achieve 95% confidence, and identified proteins were
grouped by the ProGroup algorithm (AB sciex) to minimize
redundancy. The bias correction option was executed.

A decoy database search strategy was also used to esti-
mate the false discovery rate (FDR), defined as the percentage
of decoy proteins identified against the total protein identifi-
cation. The FDR was calculated by searching the spectral
against the Uniprot H. sapiens decoy database. The esti-
mated low FDR of 0.9% indicated a high reliability in the
identified proteins.

Quantification of Relative Protein Expression—We em-
ployed a customized software package, iQuantitator (12–14)
to infer the magnitude of change in protein expression. The
software infers sample-dependent changes in protein expres-
sion using Markov chain, Monte Carlo, and Bayesian statisti-
cal methods. Basically, this approach was used to generate
means and 95% credible intervals (upper and lower) for each
protein expression of each tumor of the training set and the
test set by using peptide-level data for each component pep-
tide. For proteins whose iTRAQ ratios were down-regulated in
tissues, the extent of down-regulation was considered further
significant if the higher limit of the credible interval had a value
lower than 1. Conversely, for proteins whose iTRAQ ratios
were up-regulated in tumors, the extent of up-regulation was
considered further significant if the lower limit of the credible
interval had a value greater than 1. The width of these credible
intervals depends on the data available for a given protein.
Since the number of peptides observed and the number of
spectra used to quantify the change in expression for a given
protein are taken into consideration, it is possible to detect
small but significant changes in up- or down-regulation when
many peptides are available. The peptide selection criteria for
relative quantification were performed as follows. Only pep-
tides unique for a given protein were considered for relative
quantification, excluding those common to other proteins. In
cases where a peptide could be assigned to more than one
protein, it is eliminated from consideration prior to analysis.
Proteins were identified on the basis of having at least two
peptides with an ion score above 95% confidence. The pro-
tein sequence coverage (95%) was estimated for specific
proteins by the percentage of matching amino acids from the
identified peptides having confidence greater than or equal to
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95% divided by the total number of amino acids in the
sequence.

Functional Annotation and Network Analysis—Gene ontol-
ogy (GO) terms for identified proteins were extracted, and
overrepresented functional categories for differentially
abundant proteins were determined by the high throughput
GOMiner tool (National Cancer Institute, http://discover.
nci.nih.gov.gate2.inist.fr/gominer/) (15). All proteins that were
subjected to iQuantitator analysis served as the background
list, and GO terms with at least five proteins were used for
statistical calculations. A p value for each term was calculated
via the one-sided Fisher’s exact test, and FDR was estimated
by permutation analysis using 1,000 randomly selected sets
of proteins sampled from the background list. Statistically
significant (FDR�25%) GO terms were clustered based on
the correlation of associated proteins to minimize potential
redundancy in significant GO terms.

Statistical Analysis—To visualize clustering of groups, a
two-way (by protein and tumor ID) hierarchal clustering was
performed on log2-transformed data. Further multivariate sta-
tistics and modeling was performed with SIMCA (SIMCA 13.0,
Umetrics, Sweden) (16). The analysis was performed on
mean-centered, unit-variance-scaled data, assuming equal
importance of each protein regardless of relative abundance
and magnitude of variance between samples. Principal com-
ponent analysis (PCA) (17, 18), was performed to get an
overview of the data, detect clustering of the data, and pick
up outliers if any. The PCA summarizes the variation of the
data matrix (i.e. protein ratios) and shows the relationship
between the observations. For classification and identification
of proteins differentiating relapse from relapse-free tumors/
patients, we used orthogonal partial least square analysis
(OPLS) (19). The OPLS analysis detects the protein expres-
sion data that covaries with the defined clinical groups. For
optimization of the OPLS models, we used the variable im-
portance in the projection value to judge protein influence
(including prediction performance) on the model. The OPLS
models were validated by sevenfold full cross-validation. Pro-
teins with high variable importance in the projection through-
out the cross-validation of the model (95% confidence inter-
val) were selected for the optimized model. We used the plots
of the scores predicted in the cross-validation and analysis of
variance (CV-ANOVA) to evaluate the model validity. Fisher
exact test were calculated for the training set versus the test
set and for the relapse versus no-relapse cohorts.

Survival rates were calculated using the nonparametric
Kaplan–Meier method, and log-rank tests were performed to
evaluate the difference in the time between recurrence and
nonrecurrence groups. Multivariate Cox models were used to
assess the prognostic value of each variable.

Immunohistochemistry and Scoring—The 42 tumors from
the training set (ICO René Gauducheau) were studied by
immunohistochemistry. The immunohistochemistry was car-
ried out on 4-�m thick paraffin embedded sections of forma-

lin-fixed tumor samples. Details of the antigen retrieval tech-
nique and dilution of primary antibodies (TrpRS, DP, and TPS1)
are described in Supplemental data S2. The immunolabeling
technique was performed by a benchmark automatized tissue
staining system (Ventana Medical System, Tucson, AZ). The
immunohistochemistry was evaluated semiquantitatively by
the percentage of cytoplasmic staining cells, the intensity, and
the presence or not of secretory granules. To exclude subjec-
tivity, all slides were evaluated by two pathologists who had no
knowledge of the patients’ identities or clinical status. In dis-
crepant cases, the two pathologists reviewed the slides to-
gether and reached a consensus. The percentage of immuno-
positive stained cells (A) was divided into four grades as: �10%
(0); 10–30% (1); 30–50% (2); 50–70% (3); and �70% (4). Sec-
ond, the intensity of staining was scored by evaluating the
average staining intensity (B) of the positive cells (0, none; 1,
weak; 2, intermediate; and 3, strong). The score for each section
was measured as A � B, and the result was defined as negative
(-, 0), weakly positive (�, 1–3), positive (��, 4–7), and strongly
positive (���, 8–12). The immunohistochemical data were
subjected to statistical analysis. All quantitative data were re-
corded as mean 	 S.D. Comparison between multiple groups
was performed by one-way ANOVA and Wilcoxon rank test (p
value� .05).

Receiver Operating Characteristic Curves—Individual and
combined biomarker performances were investigated on the
receiver operating characteristic curves with linear discrimi-
nant analysis. Linear discriminant analysis was used to find a
linear combination of features that characterizes or separates
two or more classes of objects or events. The resulting com-
bination was then used as a linear classifier. To determine
how accurately the learning algorithm was able to predict
data, cross-validation and bootstrapping methods were used.
In leave-one-out cross-validation, one sample was removed
from the dataset, and a classifier was generated using the
remaining samples to predict the status of the removed sam-
ple. In 10-fold cross-validation, the data were divided into 10
subsets of approximately equal size, and 10 iterations of
training and validation were performed. The 0.632� bootstrap
cross-validation uses resampling technique. The 10-fold
cross-validation and bootstrapping procedures were repli-
cated 100 times. Statistical analyses were performed using
TANAGRA (v1.4.49).

RESULTS

The training tumors were profiled by iTRAQ-LC-MS/MS
approach (Supplemental data S3). The baseline clinical fea-
tures of patients were similar between the ICO Paul Papin
training set and the ICO René Gauducheau test cohorts,
although patient tumor size were slightly bigger in the training
set (Table I). The median follow-up for the good prognosis
patients in the training and test sets was 168 (range � 68–
279) and 203 (range � 51–413) months, respectively. In the
training cohort, 14 patients experienced a relapse (13 distant
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metastasis and 1 contralateral), and among these patients, we
recorded 11 deaths. In the test set, 17 patients experienced a
relapse (15 distant metastasis and 2 contralateral), and
among these patients, we recorded 13 deaths. Clinical data
used for data analysis were updated until January 2013.

Identification of Expressed Proteins in the Training Samples:
Proteomic Coverage of 42 Triple-Negative Breast Tumors—As
we considered the microenvironment was an integral, essen-
tial part of the tumor, the samples were not microdissected,
but each tumor section was validated as containing more than
75% tumor cells by pathologists. Using Protein Pilot and
iQuantitator software, we identified and quantified a total of
2,784 nonredundant proteins with at least two peptides, ac-
cording to the schematic workflow of the experimental design
presented Fig. 1. By taking into consideration both the pep-
tide and spectra numbers, this approach allowed us to detect
small but significant expression changes, provided that sev-
eral peptides are detected. Using this analysis, we were able
to obtain a list of quantified proteins from the 20 iTRAQ
experiments. Following Metacore analysis using the “ Enrich-
ment of protein function” function, (Supplemental data S4),
we identified 690 enzymes, 58 phosphatases, 122 proteases,
105 kinases, 73 ligands, 82 transcription factors, and 83 re-
ceptors. This analysis showed that the best enrichment score
and p value were assigned to the GO Process “Metabolic
Process” and to the “Cytoskeleton Remodeling” pathway
(Supplemental data S4). Among these 2,784 proteins, 220
proteins met our definition for differential expression in a
comparison between tumor and normal tissues: 126 were
overexpressed, and 93 were underexpressed (Supplemental
data S3).

A Proteomic Coverage of Different Status—We used the
iQuantitator software to quantify protein expression between

Kaplan-Meier
OS

Independant validation of 
DP, TSP1as poor pronostic markers

 and TrpRS as good pronostic marker

IHC

Relapse group : DP, TSP1
No relapse group : TrpRS

Relapse group : DP, TSP1
No relapse group : TrpRS

Relapse group : DP, TSP1
No relapse group : TrpRS, HK1

Relapse group : 9 proteins
No relapse group : 5 proteins

Kaplan-Meier
DFS

Relapse group : 9 proteins
No relapse group : 5 proteins

Test set 
24 no relapses

17 relapses

Training set (549 proteins)
27 no relapses

14 relapses

OPLS analysis
iQuantitator

protein identification 
and quantification : 2784

Global proteome profiling

Test set (ICO René Gauducheau)
41 samples

Training set (ICO Paul Papin)
42 samples

FIG. 1. Flow chart of experimental design for the development
and validation of the biomarkers.

TABLE I
Clinicopathological characteristics of patients for tissue proteomic studies

Patient characteristics Training set
(n � 42)

Test set
(n � 41)

Age (years) median 
min-max� 55
28–71� 57
29–84�

� 50 (%) 15 (34.8) 10 (24.4)
� � 50 (%) 28 (65.2) 31 (75.6)

No-recurrence Recurrence No-recurrence Recurrence
28 (67.4) 14 (32.6) 24 (58.5) 17 (41.5)

Grade 1 0 0 1 1
Grade 2 2 0 5 1
Grade 3 26 14 18 15
Lymph node status

Positive (%) 4 4 9 9
Negative (%) 24 10 15 8

pT (mm)
8–10 1 1 1 1
11–20 22 11 13 7
21–50 4 3 9 6
�50 0 0 1 3

Type of surgery
mastectomy 4 5 8 10
tumorectomy 24 9 16 7
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the different status “relapse” (Supplemental data S5) and “no
relapse” (Supplemental data S6). For the relapse group, 295
proteins were significantly differentially expressed: 165 were
overexpressed, and 130 were underexpressed. The Metacore
analysis of this list of proteins indicated a cytoskeleton re-
modeling with a p value � 9.2 10–12 for the Process Network
“Regulation of Cytoskeleton Rearrangement” and a best en-
richment score and p value for “Binding” (p � 9.4 10–26) in
the GO Molecular Functions term. It should be noted that 26
secreted proteins were found in this list characterizing the
relapse group (Supplemental data S5). For the no-relapse
group, 189 proteins were significantly differentially expressed:
98 were overexpressed, and 91 were underexpressed. For
this group, the best score for the Process Network was ob-
tained for “Cell adhesion_Integrin-mediated cell-matrix adhe-
sion” (p � 7.5 10–11). The protein class “ligands” was found

to have to best z-score in the module “Enrichment for Protein
Function” with 15 proteins (Supplemental data S6).

Classification Based on Relapse Status—We investigated if
we could detect differences between the relapse and no-
relapse groups in terms of protein levels in the triple-negative
tumors by OPLS analysis. This analysis was performed on 549
proteins for which quantitative value was available in all the
tumors. The OPLS model, initially based on all 549 proteins,
was optimized by stepwise removal of proteins with small
variable importance in the projection value. This was per-
formed until the model did not improve anymore as judged by
the CV-ANOVA p value, indicative of the probability that the
model is the result of chance alone. The optimized OPLS
model included 59 proteins (p � 2.1 10–15) (Fig. 2). Among
these proteins, 33 were assigned to the group without recur-
rence and 26 to the group with recurrence. These proteins

FIG. 2. Supervised orthogonal partial least squares discrimination analysis (OPLS-DA) to distinguish between no-relapse and relapse
groups. OPLS-DA analysis was performed on 549 proteins for which quantitative value was available in all the tumors. The optimized OPLS
model included 59 proteins. Among these proteins, 33 were assigned to the group without recurrence and 26 to the group with recurrence.
Error bars indicate the confidence intervals of the coefficients.

TABLE II

Gene Protein Expression iTRAQ ratio

No relapse
WARS Tryptophanyl-tRNA synthetase (TrpRS) overexpressed 1,6

Relapse
DSP Desmoplakin (DP) overexpressed 1,8
THBS1 Thrombospondin-1 (TSP1) overexpressed 1,7
IDH2 Isocitrate dehydrogenase 
NADP� (IDH) overexpressed 1,7
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were matched against a database consisting of known protein
signaling pathways using Metacore. For the no-relapse group,
two significant pathways (p � .05) were found: Blood coag-
ulation (p � 4.4 10–6) and Chemotaxis_Lipoxin inhibitory
action on fMLP-induced neutrophil chemotaxis (p � .0003).
The relapse group was characterized by just one significant
pathway: Cytoskeleton remodeling_Keratin filaments (p � 7.9
10–7) (Supplemental data S7).

Proteomic Signature of Triple-Negative Breast Tumors Re-
lapse—By combining protein lists obtained from the univari-
ate (with iQuantitator) and the multivariate analyses (OPLS),
we generated two lists of proteins that characterize the re-
lapse (DP, TPS1, G6PD, IDH, KRT19, KRT8, EPPK1, ARH-
GAP1, DPYSL3,) and no-relapse (TrpRS, HSPE1, SAMHD1,
HK1, IGHG1) groups of triple-negative breast tumors These
proteins were submitted to a Fisher exact test and only
TrpRS, TSP1, DP, and IDH were validated (Table II and Sup-
plemental data S8).

Pronostic Value of the Markers in the Training Set and in the
Test Set—The prognostic value of the markers was evaluated
through estimation of disease-free survival (DFS) and overall
survival (OS) using the Kaplan–Meier method. By the same
iTraq quantitative proteomic approach used in the training set,

41 tumors were analyzed. Then, in the both training and test
cohorts, the patients were divided into two categories based
on the median iTraq expression data for each marker: high
expression (protein levels higher than median) versus low
expression (protein levels lower than median).

In the training set, for the no-relapse group, a high expres-
sion level of TrpRS was correlated with a significantly better
DFS compared with a low expression (p � .0129) (Supple-
mental data S9). In the test set, TrpRS (p � .049) was vali-
dated. When we considered the expression of TrpRS with the
OS rates, we showed that TrpRS was validated in the training
(p � .098) and in the test set (p � .0136) (Supplemental data
S10).

In the training set, for the relapse group, patients’ tumors
with high expression level of any of the three proteins expe-
rienced a significantly worse DFS compared with those with
low expression (p � .0001, p � .0330, p � .0016) for DP,
TPS1, and IDH, respectively (Supplemental data S11). In the
test set, DP (p � .002), TPS1 (p � .0001), and IDH (p � .0040)
were validated. Furthermore, tumors with high DP (p � .0209),
TSP1 (p � .0364), and IDH (p � .0007) expression were also
associated with lower OS rates in the training set (Supple-
mental data S12) while only DP (p � .0256) and TPS1 (p �
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FIG. 3. Kaplan–Meier survival estimates. Kaplan–Meier analysis shows that high TrpRS and low DP-TSP1 are strongly predictive of overall

survival.
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.0018) were validated in the test cohort. By combining the
expression levels of DP and TPS1, we showed that patients
who have a high expression of these both biomarkers in their
tumors have a significantly worse DFS and OS compared with
those with low expression of DP and TPS1 (Fig. 3). Finally, DP
and TSP1 expression was a strong independent prognostic
factor to predict risk of recurrence and TrpRS expression an
independent prognostic factor to predict no recurrence. No
other prognostic factors, such as age, tumor size, or nodal
status of the patients, were statistically significantly associ-
ated with recurrence (Supplemental data S13).

Validation of Dysregalated Protein Expression—To confirm
the dysregulation of the best biomarker candidates for the

relapse and no-relapse groups, the expressions of TrpRS, and
TPS1 and DP were analyzed by immunohistochemistry using
paraffin-embedded tissues isolated from the training and the
test cohorts. Representative pictures of TrpRS, TPS1, and DP
staining in no-relapse and relapse cases are shown Fig. 4 for
the test set. For the no-relapse group, intense cytoplasmic
staining was shown for TrpRS whereas we observed a signif-
icant (p � .0001) decrease staining intensity in the no-relapse
tumor group for this marker. Inversely, for TPS1 and DP, the
no-relapse cases exhibited a moderate cytoplasmic staining
whereas the cytoplasmic staining increased significantly in
the relapse cases (Fig. 4 and Supplemental data S14). In order
to evaluate the performance of our protein signature by IHC
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FIG. 4. Validation of TrpRS as good
pronostic biomarker and TSP1 and DP
as bad prognostic biomarkers. Differ-
ent distribution of IHC scores (staining
intensity X staining percentage) between
relapse and no-relapse groups for TrpRS
(A), DP (B), TSP1 (C), and combined DP-
TSP1 (D) (mean 	 S.D. are shown).
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approach, we investigated the receiver operating character-
istic curves that discriminate the no-relapse and relapse
groups. Individual biomarker and combination of two or three
biomarkers were investigated. The corresponding AUC was
estimated in the training and in the test cohorts (Supplemental
data S15). In the training set, each individual biomarker was
able to discriminate the both groups, but we obtained the best
AUC for the association of TSP1-TrpRS (AUC: 0.92) and for
the combination of the three biomarkers TSP1-TrpRS-DP
(AUC: 0.93). In the test set, each biomarker was also able to
discriminate between both groups, but the best protein com-
bination to discriminate between no-relapse and relapse
groups was obtained with the association of the three bio-
markers (AUC : 0.82) (Fig. 5). Finally, to confirm the robust-
ness of the learning algorithm, accuracy was estimated using
common methods based on resampling: cross-validation
(leave-one-out and repeat 10-fold cross-validation) and boot-
strap. Interestingly, results show stable estimate accuracies
for the linear discriminant analysis classifier (Supplemental
data S15).

DISCUSSION

Despite the many recent advances in breast tumor treat-
ments through targeted therapies, no specific treatment ex-
ists for the triple-negative breast tumors, and there are no
prognostic molecular markers that would predict whether a
tumor will behave aggressively or remain indolent. It is abun-
dantly clear that tumor biology plays a significant role in
resultant tumor behavior. Unfortunately, triple-negative breast
primary tumors that are placed in the same prognostic cate-
gory based on currently used parameters may behave differ-
ently. It is our hypothesis that the underlying biology of these
tumors and differences in its detail will determine a particular
tumor’s potential for aggressiveness. In addition, we can use
these biological differences to identify novel molecular mark-
ers that may be useful for diagnostic, prognostic, or predictive
purposes, the success of which would pave the road for a
new era of personalized medicine in breast cancer.

In this study, we performed quantitative proteomic profiling
of 83 triple-negative breast tumors to identify biomarkers for

good and bad prognostic. Although the size of the training set
and the test set are limited, we propose the couple DP/TPS1
for the recurrence and bad prognostic and TrpRS for a good
prognostic.

Desmoplakin is the principal plaque protein of desmo-
somes, involved in the adhesion junctions found in various
tissues. Desmosomes are intercellular junctions that provide
strong adhesion among cells. These proteins are ubiquitously
expressed in epithelia and play a critical role in the mainte-
nance of epithelial tissue integrity. Recently, studies suggest
that desmosomes participate in the regulation of cell motility,
growth, differentiation, and apoptosis (20–22). DP, as found-
ing member of the plakin family, is an obligate component of
desmosomal plaques (23). Two isoforms of DP have been
reported so far, DP I (322 kDa) and DP II (259 kDa), both
encoded by the DSP gene on human chromosome 6p24.3.
DP proteins interact with plakoglobin (�-catenin), plakophilins,
and intermediate filaments, providing the intimate link be-
tween desmosomal cadherins and the cytoskeleton (24, 25)
and belong to the pathway cytoskeleton Remodeling_Kera-
tins-filaments and Gap junctions found in Metacore analysis.
This is in agreement with the fact that this pathway is the
top-ranked pathway characterizing the relapse group in our
proteomic approach.

The second poor prognostic biomarker, TPS1, thrombos-
pondin-1, is an extracellular matrix glycoprotein (26) and was
initially recognized as an antiangiogenic factor (27, 28). More
recently, TSP1 was shown to induce proangiogenic activity in
breast cancer cells (29). Other experiments suggested that
TSP1 accelerates invasion and metastasis in breast (30), pan-
creatic (31), thyroid (32), and prostate (33) cancers. Recent
study on invasive ductal carcinoma of the breast have re-
ported that TSP1 is highly expressed in tumors associated
with lymph node metastasis (34). In this context, TSP1 is not
a specific marker of triple-negative breast tumors but rather a
marker for aggressive tumors.

The other interesting protein as a good prognostic is TrpRS,
which is a tryptophanyl-tRNA synthetase. Several tRNA syn-
thase proteins have been identified as secreted cytokines that

FIG. 5. Receiver operating charac-
teristics curves of the 3 protein signa-
ture in the training set (A) and in the
test set (B).
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control angiogenesis and immune responses and that may
have roles in the tumor microenvironment (35). This protein is
653 amino acids in length and is involved in protein synthesis,
regulation of RNA transcription and translation, and cytokine
activities in inflammatory and angiogenic signaling pathways
(36). The native enzyme lacks angiogenic activity. Proteolysis
or alternative splicing of its N-terminal 47 amino acids, gen-
erates a mature mini-TrpRS or T2-TrpRS (37, 38), which pos-
sesses the angiostatic cytokine function (39). The production
of mini-TrpRS is stimulated by IFN�. The secretion of TrpRS is
mediated by the dissociation from a ternary complex that is
formed with annexin II and S100A10 in the cytosol (40). Inter-
estingly, cytosolic S100A10 was observed to be decreased in
abundance in this study. VE-cadherin, a calcium-dependent
adhesion molecule, was identified as a receptor for mini-
TrpRS (41) and is selectively expressed and concentrated at
the intercellular junctions of endothelial cells.

TrpRS has been demonstrated to regulate ERK, Akt, and
eNOS activation pathways that are associated with angiogen-
esis, cytoskeletal reorganization, and shear stress-responsive
gene expression (40). Interestingly, a recent report indicated
that low expression levels of TrpRS are related to an in-
creased risk of disease recurrence and reduced survival of
patients with colon cancer (42), although it is not known
whether this finding is related to the angiostatic activity of
TrpRS.

Future prospective clinical trials are needed to further con-
solidate the validity of this biomarker signature. Nevertheless,
we propose the establishment of an IHC test to calculate the
score of TrpRS, DP, and TPS1 and to evaluate the degree of
aggressiveness of the triple-negative tumors.
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Reyes, Á., Álvarez-Sánchez, E., and López-Camarillo, C. (2014) Com-
parative proteomic profiling of triple-negative breast cancer reveals that
up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3
and caspase 9. J. Proteomics. 111, 198–211

6. Liu, N. Q., Stingl, C., Look, M. P., Smid, M., Braakman, RB., De Marchi, T.,
Sieuwerts, AM., Span, PN., Sweep, F. C., Linderholm, B. K., Mangia, A.,
Paradiso, A., Dirix, LY., Van Laere, SJ., Luider, TM., Martens, JW.,
Foekens, JA., Umar, A. (2014) Comparative proteome analysis revealing
an 11-protein signature for aggressive triple-negative breast cancer.
J. Natl. Cancer Inst. 106, 376

7. Albini, A., and Sporn, M. B. (2007) The tumour microenvironment as a target
for chemoprevention. Nat. Rev. Cancer. 7, 139–147

8. Bizzarri, M., Cucinal, A., and Proietti, S., (2010) The tumor microenviron-
ment as a target for anticancer treatment. Oncobiol. Targets. 1, 3–11
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